论文标题

评估荷兰语嵌入中的偏见

Evaluating Bias In Dutch Word Embeddings

论文作者

Mulsa, Rodrigo Alejandro Chávez, Spanakis, Gerasimos

论文摘要

自然语言处理中的最新研究表明,单词嵌入可以编码培训数据中存在的社会偏见,这些社会偏见可能会影响现实世界应用中的少数群体。本文探讨了荷兰嵌入中隐含的性别偏见,同时研究了是否也可以在荷兰语中使用基于英语的方法。我们实施了嵌入式协会测试(WEAT),聚类和句子嵌入协会测试(SEAT)方法来量化荷兰语单词嵌入中的性别偏见,然后我们继续使用硬性降低和降低debias缓解方法来减少偏见,最后我们评估了在下游任务中的ebseddings empeddings的性能。结果表明,传统和情境化的荷兰语嵌入中存在性别偏见。我们强调了如何通过充分翻译数据并考虑到语言的独特特征来在荷兰嵌入中使用用于测量和减少英语创建的偏差的技术。此外,我们分析了对下游任务的依据技术对传统嵌入的影响可忽略不计的影响,而在上下文化嵌入中的性能下降了2%。最后,我们将翻译后的荷兰数据集释放给公众,并具有缓解偏见的传统嵌入。

Recent research in Natural Language Processing has revealed that word embeddings can encode social biases present in the training data which can affect minorities in real world applications. This paper explores the gender bias implicit in Dutch embeddings while investigating whether English language based approaches can also be used in Dutch. We implement the Word Embeddings Association Test (WEAT), Clustering and Sentence Embeddings Association Test (SEAT) methods to quantify the gender bias in Dutch word embeddings, then we proceed to reduce the bias with Hard-Debias and Sent-Debias mitigation methods and finally we evaluate the performance of the debiased embeddings in downstream tasks. The results suggest that, among others, gender bias is present in traditional and contextualized Dutch word embeddings. We highlight how techniques used to measure and reduce bias created for English can be used in Dutch embeddings by adequately translating the data and taking into account the unique characteristics of the language. Furthermore, we analyze the effect of the debiasing techniques on downstream tasks which show a negligible impact on traditional embeddings and a 2% decrease in performance in contextualized embeddings. Finally, we release the translated Dutch datasets to the public along with the traditional embeddings with mitigated bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源