论文标题

广义的几何布朗运动:理论和适用于期权定价的应用

Generalised geometric Brownian motion: Theory and applications to option pricing

论文作者

Stojkoski, Viktor, Sandev, Trifce, Basnarkov, Lasko, Kocarev, Ljupco, Metzler, Ralf

论文摘要

经典期权定价方案假定金融资产的价值遵循几何布朗尼运动(GBM)。然而,越来越多的研究表明,由于将其特性与经验分布进行比较时发现的不规则性,因此简单的GBM轨迹并不是资产动态的足够代表。作为解决方案,我们开发了GBM的概括,其中记忆内核的引入批判性地决定了随机过程的行为。我们找到了矩,对数时刻和周期日对数返回的期望的一般表达式,并使用从属方法获得相应的概率密度函数。特别是,我们考虑使用SGBM的二次GBM(SGBM),GBM和SGBM的混合物以及SGBM的混合物。我们利用由此产生的广义GBM(GGBM)来检查欧洲呼叫选项的定价中选定的一组内核的经验性能。我们的结果表明,内核的性能最终取决于选项的成熟度及其金钱。

Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics due to irregularities found when comparing its properties with empirical distributions. As a solution, we develop a generalisation of GBM where the introduction of a memory kernel critically determines the behavior of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and obtain the corresponding probability density functions by using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源