论文标题

迈向友好的在线社区:无监督的样式转移框架用于亵渎的框架

Towards A Friendly Online Community: An Unsupervised Style Transfer Framework for Profanity Redaction

论文作者

Tran, Minh, Zhang, Yipeng, Soleymani, Mohammad

论文摘要

进攻性和虐待性语言是社交媒体平台上的一个紧迫问题。在这项工作中,我们提出了一种将令人反感的评论,包含亵渎性语言或进攻性语言的陈述转换为非犯罪性语言的方法。我们设计一个检索,生成和编辑无监督的样式转移管道,以限制性限制的方式编辑进攻性评论,同时保持高水平的流利度并保留原始文本的内容。我们广泛评估方法的性能,并使用自动指标和人类评估将其与以前的样式转移模型进行比较。实验结果表明,我们的方法在人类评估上的表现优于其他模型,并且是唯一在所有自动评估指标上持续良好表现的方法。

Offensive and abusive language is a pressing problem on social media platforms. In this work, we propose a method for transforming offensive comments, statements containing profanity or offensive language, into non-offensive ones. We design a RETRIEVE, GENERATE and EDIT unsupervised style transfer pipeline to redact the offensive comments in a word-restricted manner while maintaining a high level of fluency and preserving the content of the original text. We extensively evaluate our method's performance and compare it to previous style transfer models using both automatic metrics and human evaluations. Experimental results show that our method outperforms other models on human evaluations and is the only approach that consistently performs well on all automatic evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源