论文标题

从相互作用轨迹中基于启发式的服务行为模型的挖掘

Heuristic-based Mining of Service Behavioral Models from Interaction Traces

论文作者

Kabir, Muhammad Ashad, Han, Jun, Hossain, Md. Arafat, Versteeg, Steve

论文摘要

软件行为模型已被证明可用于模拟和测试软件系统。已经提出了许多技术来从其交互跟踪中推断出软件系统的行为模型。推断模型的质量对于成功使用至关重要。虽然概括对于推断出简洁的行为模型是必要的,但通常,推断模型的现有技术过度概括了哪种行为是有效的。不精确的模型包括许多虚假行为,从而损害了其使用的有效性。在本文中,我们提出了一种新型技术,该技术提高了从相互作用轨迹中推断出的行为模型的准确性。我们方法的本质是基于启发式的概括和真实的最小化。一组启发式方法包括匹配输入迹线的模式,并将其推广到简洁的模型表示。此外,我们采用了一种真实的最小化技术来合并这些广义痕迹。我们方法的关键见解是推断出一个简洁的行为模型,而不会损害其准确性。我们介绍了对最新规范推理技术如何改善我们的方法的经验评估。结果表明,我们的方法矿山模型具有100%精度,并以有限的计算开销进行回忆。

Software behavioral models have proven useful for emulating and testing software systems. Many techniques have been proposed to infer behavioral models of software systems from their interaction traces. The quality of the inferred model is critical to its successful use. While generalization is necessary to deduce concise behavioral models, existing techniques of inferring models, in general, overgeneralize what behavior is valid. Imprecise models include many spurious behaviors, and thus compromise the effectiveness of their use. In this paper, we propose a novel technique that increases the accuracy of the behavioral model inferred from interaction traces. The essence of our approach is a heuristic-based generalization and truthful minimization. The set of heuristics include patterns to match input traces and generalize them towards concise model representations. Furthermore, we adopt a truthful minimization technique to merge these generalized traces. The key insight of our approach is to infer a concise behavioral model without compromising its accuracy. We present an empirical evaluation of how our approach improves upon the state-of-the-art specification inference techniques. The results show that our approach mines model with 100% precision and recall with a limited computation overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源