论文标题
广义线性模型的差异性贝叶斯推断
Differentially Private Bayesian Inference for Generalized Linear Models
论文作者
论文摘要
广义线性模型(GLM)(例如逻辑回归)是数据分析师曲目中最广泛使用的臂之一,并且经常在敏感数据集中使用。在差异隐私(DP)约束下研究GLM的大量先前作品仅提供回归系数的私有点估计,并且无法量化参数不确定性。在这项工作中,以逻辑和泊松回归为示例,我们引入了一种通用的噪声吸引的dp贝叶斯推理方法,用于GLM,鉴于汇总统计量嘈杂。量化不确定性使我们能够确定哪些回归系数在统计学上与零有显着差异。我们提供了以前未知的紧密隐私分析,并在实验上表明,从我们的模型中获得的后代虽然遵循强大的隐私保证,但与非私人的后代接近。
Generalized linear models (GLMs) such as logistic regression are among the most widely used arms in data analyst's repertoire and often used on sensitive datasets. A large body of prior works that investigate GLMs under differential privacy (DP) constraints provide only private point estimates of the regression coefficients, and are not able to quantify parameter uncertainty. In this work, with logistic and Poisson regression as running examples, we introduce a generic noise-aware DP Bayesian inference method for a GLM at hand, given a noisy sum of summary statistics. Quantifying uncertainty allows us to determine which of the regression coefficients are statistically significantly different from zero. We provide a previously unknown tight privacy analysis and experimentally demonstrate that the posteriors obtained from our model, while adhering to strong privacy guarantees, are close to the non-private posteriors.