论文标题

Cosmo:零摄入常识性问题的有条件SEQ2SEQ的混合模型回答

COSMO: Conditional SEQ2SEQ-based Mixture Model for Zero-Shot Commonsense Question Answering

论文作者

Moghimifar, Farhad, Qu, Lizhen, Zhuo, Yue, Baktashmotlagh, Mahsa, Haffari, Gholamreza

论文摘要

常识性推理是指评估社会状况并采取相应行动的能力。识别社会环境的隐性原因和影响是驱动能力,可以使机器执行常识性推理。社会互动的动态世界要求上下文依赖于按需系统来推断这种基本信息。但是,当前在这个领域的方法缺乏在面对看不见的情况下进行常识性推理的能力,这主要是由于无法识别各种隐式社会关系。因此,他们无法估计正确的推理路径。在本文中,我们提出了有条件的基于SEQ2SEQ的混合模型(COSMO),该模型为我们提供了动态和多样化内容的能力。我们使用COSMO生成上下文依赖性的子句,该子句形成一个动态知识图(kg),以实现常识性推理。为了展示我们模型对上下文依赖性知识生成的适应性,我们解决了零击的常识问题答案的任务。经验结果表明,与最先进的模型相比,提高了 +5.2%。

Commonsense reasoning refers to the ability of evaluating a social situation and acting accordingly. Identification of the implicit causes and effects of a social context is the driving capability which can enable machines to perform commonsense reasoning. The dynamic world of social interactions requires context-dependent on-demand systems to infer such underlying information. However, current approaches in this realm lack the ability to perform commonsense reasoning upon facing an unseen situation, mostly due to incapability of identifying a diverse range of implicit social relations. Hence they fail to estimate the correct reasoning path. In this paper, we present Conditional SEQ2SEQ-based Mixture model (COSMO), which provides us with the capabilities of dynamic and diverse content generation. We use COSMO to generate context-dependent clauses, which form a dynamic Knowledge Graph (KG) on-the-fly for commonsense reasoning. To show the adaptability of our model to context-dependant knowledge generation, we address the task of zero-shot commonsense question answering. The empirical results indicate an improvement of up to +5.2% over the state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源