论文标题
纤维增强复合材料的显微裂缝和R-curve行为的相位场预测
Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites
论文作者
论文摘要
我们提出了一个计算框架,以探索微结构和组成特性对纤维增强聚合物复合材料的断裂韧性的影响。为了捕获显微镜基质破裂和纤维 - 矩阵脱键,该框架在有限元方法的上下文中串联了相位场断裂方法和凝聚区模型。进行了虚拟的单身弯曲测试。复合材料的实际微观结构是由裂缝过程区域中的嵌入式细胞模拟的,而其余区域则均匀为各向异性弹性固体。对预测结果与实验观察结果的详细比较表明,有可能准确捕获裂纹路径,界面脱离和负载与位移响应。确定了裂纹生长抗性曲线(R-curve)对基质断裂韧性和纤维 - 矩阵界面特性的敏感性。还探索了孔隙率对纤维增强复合材料的R-curve的影响,从而揭示了随着空隙体积分数增加的稳定响应。这些结果将光线置于微观断裂机制中,并为高骨折韧性复合材料有效设计树立了基础。
We present a computational framework to explore the effect of microstructure and constituent properties upon the fracture toughness of fibre-reinforced polymer composites. To capture microscopic matrix cracking and fibre-matrix debonding, the framework couples the phase field fracture method and a cohesive zone model in the context of the finite element method. Virtual single-notched three point bending tests are conducted. The actual microstructure of the composite is simulated by an embedded cell in the fracture process zone, while the remaining area is homogenised to be an anisotropic elastic solid. A detailed comparison of the predicted results with experimental observations reveals that it is possible to accurately capture the crack path, interface debonding and load versus displacement response. The sensitivity of the crack growth resistance curve (R-curve) to the matrix fracture toughness and the fibre-matrix interface properties is determined. The influence of porosity upon the R-curve of fibre-reinforced composites is also explored, revealing a stabler response with increasing void volume fraction. These results shed light into microscopic fracture mechanisms and set the basis for efficient design of high fracture toughness composites.