论文标题
基于VIO-UWB的协作本地化和非均质多机器人系统中的密集场景重建
VIO-UWB-Based Collaborative Localization and Dense Scene Reconstruction within Heterogeneous Multi-Robot Systems
论文作者
论文摘要
多机器人系统中的有效协作需要对相对本地化的准确且可靠的估计:从合作操作到协作感应,包括合作探索或合作运输。本文介绍了一种新型的方法,用于在包括地面机器人和微型汽车(MAVS)的异质多机器人系统中进行密集场景重建的合作定位。我们通过依靠基于UWB的范围和基于UWB的视觉惯性探测器(VIO)基于本地化的eGomotion估计来解决完全相对姿势估计的问题,而无需滑动时间窗口,同时在单个参考框架中利用了地面机器人在地面机器人上利用LIDARS进行全面相对姿势估算。在操作过程中,刚性特征值向系统提供了反馈。为了应对在受GNSS贬低的环境中避免小牛的路径计划的挑战,我们保持了地面机器人和小牛之间的视线。由于能够致密重建的激光雷达的FOV有限,因此对系统引入了新的限制。因此,我们提出了一种新颖的配方,其中杜宾斯多个旅行人员问题的变体(DMTSPN)包括与地面机器人有限的FOV相关的约束。我们的方法通过用于系统不同部分的真实机器人的模拟和实验来验证。
Effective collaboration in multi-robot systems requires accurate and robust estimation of relative localization: from cooperative manipulation to collaborative sensing, and including cooperative exploration or cooperative transportation. This paper introduces a novel approach to collaborative localization for dense scene reconstruction in heterogeneous multi-robot systems comprising ground robots and micro-aerial vehicles (MAVs). We solve the problem of full relative pose estimation without sliding time windows by relying on UWB-based ranging and Visual Inertial Odometry (VIO)-based egomotion estimation for localization, while exploiting lidars onboard the ground robots for full relative pose estimation in a single reference frame. During operation, the rigidity eigenvalue provides feedback to the system. To tackle the challenge of path planning and obstacle avoidance of MAVs in GNSS-denied environments, we maintain line-of-sight between ground robots and MAVs. Because lidars capable of dense reconstruction have limited FoV, this introduces new constraints to the system. Therefore, we propose a novel formulation with a variant of the Dubins multiple traveling salesman problem with neighborhoods (DMTSPN) where we include constraints related to the limited FoV of the ground robots. Our approach is validated with simulations and experiments with real robots for the different parts of the system.