论文标题
Bar-natan同源性和$α$的色带距离界限
Ribbon distance bounds from Bar-Natan Homology and $α$-Homology
论文作者
论文摘要
我们证明了通过Bar-Natan同源性在色带距离上的下限。该下限与Alishahi通过Bar-Natan同源性在解开数字上的下限一致,这进一步推进了Sarkar:Sarkar:Sarkar的下界通过Lee同源性在丝带距离上观察到的模式,该模式与Alishahi和Dowlin的下限同意,并通过Lee同源性地在毫无开关的数字上。我们还通过$α$-HOMOLOGY证明了在色带距离上的下限,Khovanov和Robert最近定义了Khovanov同源性的变体。
We prove a lower bound on the ribbon distance via Bar-Natan Homology. This lower bound agrees with Alishahi's lower bound on the unknotting number via Bar-Natan Homology, which furthers a pattern first observed by Sarkar: Sarkar's lower bound on the ribbon distance via Lee Homology agreed with Alishahi and Dowlin's lower bound on the unknotting number via Lee Homology. We also prove a lower bound on the ribbon distance via $α$-homology, a variant of Khovanov homology defined recently by Khovanov and Robert.