论文标题

与新的环状渗透不变神经网络的周期性变量恒星的分类

Classification of Periodic Variable Stars with Novel Cyclic-Permutation Invariant Neural Networks

论文作者

Zhang, Keming, Bloom, Joshua S.

论文摘要

神经网络(NNS)已被证明与周期性可变星的最新特征工程和随机森林(RF)分类具有竞争力。尽管以前利用NNS的工作已通过将多个周期时间序列折叠到一个周期中(从时空到相位空间)来利用周期性,但迄今为止没有任何方法利用了一个事实,即网络预测应该不变到周期折叠序列的初始阶段。初始阶段对变异性的物理起源是外源的,因此应纳入。在这里,我们提出了环状渗透不变网络,这是一种新型的NNS,可以通过极坐标卷积来确保其对相移的不变性,我们通过“对称填充”实现。在可变星光曲线的三个不同数据集中,我们表明了循环渗透不变网络的两个实现:ITCN和IRESNET,始终超过非传染性基线,并将总体错误率降低4%至22%。在10级的OGLE-III样品中,ITCN/IRESNET的平均每类准确度为93.4%/93.3%,而RNN/RF精度为70.5%/89.5%的RNN/RF精度在最近的研究中使用相同的数据。发现对非宣传基准的改进,我们建议此处介绍的方法也应适用于广泛的科学领域,在这些科学领域中,由于物理对称性,周期性数据遍布。

Neural networks (NNs) have been shown to be competitive against state-of-the-art feature engineering and random forest (RF) classification of periodic variable stars. Although previous work utilising NNs has made use of periodicity by period folding multiple-cycle time-series into a single cycle -- from time-space to phase-space -- no approach to date has taken advantage of the fact that network predictions should be invariant to the initial phase of the period-folded sequence. Initial phase is exogenous to the physical origin of the variability and should thus be factored out. Here, we present cyclic-permutation invariant networks, a novel class of NNs for which invariance to phase shifts is guaranteed through polar coordinate convolutions, which we implement by means of "Symmetry Padding." Across three different datasets of variable star light curves, we show that two implementations of the cyclic-permutation invariant network: the iTCN and the iResNet, consistently outperform non-invariant baselines and reduce overall error rates by between 4% to 22%. Over a 10-class OGLE-III sample, the iTCN/iResNet achieves an average per-class accuracy of 93.4%/93.3%, compared to RNN/RF accuracies of 70.5%/89.5% in a recent study using the same data. Finding improvement on a non-astronomy benchmark, we suggest that the methodology introduced here should also be applicable to a wide range of science domains where periodic data abounds due to physical symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源