论文标题
通过树张量算子形成混合多体量子状态的纠缠
Entanglement of formation of mixed many-body quantum states via Tree Tensor Operators
论文作者
论文摘要
我们提出了一种数值策略,以有效地估计晶格上多体量子系统的两部分纠缠措施,尤其是形成的纠缠措施。我们的方法利用了树张量操作员张量网络ANSATZ,这是密度矩阵的积极无环表示,正如我们所证明的那样,它有效地编码了有关两部分纠缠的信息,从而启用了纠缠估计的尺度。采用这项技术,我们观察到有限大小的缩放定律,以在有限温度下的一维临界晶格模型中纠缠到最多128个旋转,从而扩展到混合状态的纠缠熵的缩放定律。
We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular the Entanglement of Formation, for many-body quantum systems on a lattice. Our approach exploits the Tree Tensor Operator tensor network ansatz, a positive loopless representation for density matrices which, as we demonstrate, efficiently encodes information on bipartite entanglement, enabling the up-scaling of entanglement estimation. Employing this technique, we observe a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement entropy.