论文标题

社区结构对共识机学习的影响

Impact of Community Structure on Consensus Machine Learning

论文作者

Huynh, Bao, Dutta, Haimonti, Taylor, Dane

论文摘要

共识动态支持分散的机器学习,以分配在云计算集群或物联网上的数据。在这些和其他设置中,人们试图最大程度地减少在某些$ε> 0 $误差范围内获得共识所需的时间$τ_ε$。 $τ_ε$通常取决于基础通信网络的拓扑,对于许多算法,$τ_ε$取决于该网络归一化的laplacian matrix的第二个smallest eigenvalue $λ_2\ in [0,1] $ in [0,1] $ in [0,1] $。在这里,我们分析了网络社区结构的$τ_ε$的影响,例如,当计算节点/传感器在空间上聚集时可能会产生。我们研究了从随机块模型中汲取的网络上的共识机学习,这些网络产生了可能包含具有不同大小和密度的异质群落的随机网络。使用随机矩阵理论,我们分析了社区对$λ_2$和共识的影响,发现$λ_2$通常会增加(即$τ_ε$减少),因为一个人会降低社区结构的程度。我们进一步观察到,存在$τ_ε$达到下限的社区结构的关键水平,并且不再受社区的存在限制。我们通过对分散的支持向量机的经验实验来支持我们的发现。

Consensus dynamics support decentralized machine learning for data that is distributed across a cloud compute cluster or across the internet of things. In these and other settings, one seeks to minimize the time $τ_ε$ required to obtain consensus within some $ε>0$ margin of error. $τ_ε$ typically depends on the topology of the underlying communication network, and for many algorithms $τ_ε$ depends on the second-smallest eigenvalue $λ_2\in[0,1]$ of the network's normalized Laplacian matrix: $τ_ε\sim\mathcal{O}(λ_2^{-1})$. Here, we analyze the effect on $τ_ε$ of network community structure, which can arise when compute nodes/sensors are spatially clustered, for example. We study consensus machine learning over networks drawn from stochastic block models, which yield random networks that can contain heterogeneous communities with different sizes and densities. Using random matrix theory, we analyze the effects of communities on $λ_2$ and consensus, finding that $λ_2$ generally increases (i.e., $τ_ε$ decreases) as one decreases the extent of community structure. We further observe that there exists a critical level of community structure at which $τ_ε$ reaches a lower bound and is no longer limited by the presence of communities. We support our findings with empirical experiments for decentralized support vector machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源