论文标题
在滑动触点下进行运动计划的过渡约束的有效抽样
Efficient Sampling of Transition Constraints for Motion Planning under Sliding Contacts
论文作者
论文摘要
基于接触的运动计划进行操作,对象探索或平衡通常需要查找固定和滑动触点的序列,并计划从环境中的一个触点到另一个触点的过渡。但是,大多数现有的算法都集中在滑动联系人的控制和学习方面,但并未将问题嵌入到有原则的框架中,以提供完整性或最佳性的保证。为了解决此问题,我们提出了一种使用触点触点的联系过渡扩展基于约束计划的方法。这种过渡是整个接触序列所需的基本操作。为了建模滑动触点,我们定义了一个滑动触点约束,该触点限制允许机器人在基于网格的对象的表面上滑动。为了利用滑动触点之间的过渡,我们开发了一个触点过渡采样器,该采样器使用三种约束模式:与起始表面的接触,无目标表面接触和接触。我们统一地对这些过渡模式进行采样,这使得它们可通过基于抽样的计划算法使用。我们的方法是通过在具有不同对象和各种基于采样的计划算法的两个,三个和七个内部自由度的操纵臂上测试的。这表明滑动触点约束可以用作为高维机器人系统计划长马接触序列的基本方法。
Contact-based motion planning for manipulation, object exploration or balancing often requires finding sequences of fixed and sliding contacts and planning the transition from one contact in the environment to another. However, most existing algorithms concentrate on the control and learning aspect of sliding contacts, but do not embed the problem into a principled framework to provide guarantees on completeness or optimality. To address this problem, we propose a method to extend constraint-based planning using contact transitions for sliding contacts. Such transitions are elementary operations required for whole contact sequences. To model sliding contacts, we define a sliding contact constraint that permits the robot to slide on the surface of a mesh-based object. To exploit transitions between sliding contacts, we develop a contact transition sampler, which uses three constraint modes: contact with a start surface, no contact and contact with a goal surface. We sample these transition modes uniformly which makes them usable with sampling-based planning algorithms. Our method is evaluated by testing it on manipulator arms of two, three and seven internal degrees of freedom with different objects and various sampling-based planning algorithms. This demonstrates that sliding contact constraints could be used as an elementary method for planning long-horizon contact sequences for high-dimensional robotic systems.