论文标题
当地镜面对称性中热带曲线的伽马猜想
The Gamma Conjecture for Tropical Curves in Local Mirror Symmetry
论文作者
论文摘要
我们通过热带曲线通过热带曲线解释其中心电荷,使用热带曲线的组合信息来解释其中心电荷,从而在局部镜面对称性中与镜像Langrangian submanifold相关联的一致的捆捆,从而在这种特定情况下为局部镜面对称提供了伽玛的猜想。此外,我们将此描述放入了局部镜像对称性的毛imebert模型中,并确认Gross-Siebert模型中的参数是镜面对称性中的规范坐标。
We relate a coherent sheaf supported on a holomorphic curve with its mirror Langrangian submanifold in local mirror symmetry through a tropical curve by interpreting their central charges using the combinatorial information of the tropical curve, which proves the Gamma conjecture for local mirror symmetry in this specific case. Furthermore, we put this description in the Gross-Siebert model of local mirror symmetry and confirm that the parameters in the Gross-Siebert model are the canonical coordinates in mirror symmetry.