论文标题
图形的无环多项式
Acyclic polynomials of graphs
论文作者
论文摘要
对于每个非负整数$ i $,令$ a_i $是$ i $ -subsets $ v(g)$的$ i $ subsets的数量,它会诱导给定图形$ g $的无环子图。我们定义$ a(g,x)= \ sum_ {i \ geq 0} a_i x^i $($ a_i $的生成函数)是$ g $的无循环多项式。在介绍了这些多项式的某些特性之后,我们研究了其根的性质和位置。
For each nonnegative integer $i$, let $a_i$ be the number of $i$-subsets of $V(G)$ that induce an acyclic subgraph of a given graph $G$. We define $A(G,x) = \sum_{i \geq 0} a_i x^i$ (the generating function for $a_i$) to be the acyclic polynomial for $G$. After presenting some properties of these polynomials, we investigate the nature and location of their roots.