论文标题

$ \ mathrm {sl} _3 $ -webs in表面上的热带fock-goncharov坐标

Tropical Fock-Goncharov coordinates for $\mathrm{SL}_3$-webs on surfaces I: construction

论文作者

Douglas, Daniel C., Sun, Zhe

论文摘要

对于有限型表面$ \ mathfrak {s} $,我们研究了交换性代数$ \ Mathbb {c} [\ Mathscr {\ Mathscr {r} _ {\ Mathrm {Slrm {sl} _3(\ Mathbb {c})}(\ Mathakak} { $ \ mathrm {sl} _3(\ Mathbb {c})$ - 字符品种,由Sikora-Westbury介绍。这些基础元素来自与嵌入在表面$ \ mathfrak {s} $的某些三价图相关的跟踪函数。我们表明,通过非阴性整数坐标可以自然地索引此基础,该坐标由Knutson-Tao Rhombus不等式和Modulo 3一致性条件定义。这些坐标是通过Fock和Goncharov的几何理论与角色品种双重版本的热带点相关的。

For a finite-type surface $\mathfrak{S}$, we study a preferred basis for the commutative algebra $\mathbb{C}[\mathscr{R}_{\mathrm{SL}_3(\mathbb{C})}(\mathfrak{S})]$ of regular functions on the $\mathrm{SL}_3(\mathbb{C})$-character variety, introduced by Sikora-Westbury. These basis elements come from the trace functions associated to certain tri-valent graphs embedded in the surface $\mathfrak{S}$. We show that this basis can be naturally indexed by non-negative integer coordinates, defined by Knutson-Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the tropical points at infinity of the dual version of the character variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源