论文标题
具有矢量衍生物的高阶差分分析
Higher order differential analysis with vectorized derivatives
论文作者
论文摘要
函数的高阶导数是结构性的高维对象,它们适合许多替代表示,最受欢迎的是多指数,矩阵和张量表示。它们之间的选择取决于所需的分析,因为每个分析都有自己的优势和缺点。在本文中,我们重点介绍了矢量化表示,在该表示中,高阶导数表示为向量。这使我们能够构建一个矢量变量的矢量值函数的优雅而严格的代数,这将是笨拙的,即使不是不可能的,可以使用其他表示。我们为差异代数建立的基本结果是识别定理,具有简洁的存在和唯一性能,是任意顺序的差分和衍生物之间的。从这些基本识别中,我们开发了进一步的分析工具,包括功能产品的莱布尼兹规则,以及用于函数组成的链条规则(faàdibruno的公式)。为了完成我们的博览会,我们说明了如何将现有工具(例如泰勒的定理)纳入我们的高阶差分计算框架中。
Higher order derivatives of functions are structured high dimensional objects which lend themselves to many alternative representations, with the most popular being multi-index, matrix and tensor representations. The choice between them depends on the desired analysis since each presents its own advantages and disadvantages. In this paper, we highlight a vectorized representation, in which higher order derivatives are expressed as vectors. This allows us to construct an elegant and rigorous algebra of vector-valued functions of vector variables, which would be unwieldy, if not impossible, to do so using the other representations. The fundamental results that we establish for this algebra of differentials are the identification theorems, with concise existence and uniqueness properties, between differentials and derivatives of an arbitrary order. From these fundamental identifications, we develop further analytic tools, including a Leibniz rule for the product of functions, and a chain rule (Faà di Bruno's formula) for the composition of functions. To complete our exposition, we illustrate how existing tools (such as Taylor's theorem) can be incorporated into and generalized within our framework of higher order differential calculus.