论文标题

医学图像定位中的不确定性估计:朝着鲁棒的前丘脑靶向深脑刺激

Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation

论文作者

Liu, Han, Cui, Can, Englot, Dario J., Dawant, Benoit M.

论文摘要

基于ATLA的方法是用于自动靶向深脑刺激(DBS)前核自动靶向的标准方法,但是当Atlases和受试者之间的解剖学差异很大时,这些方法是缺乏鲁棒性的。为了提高本地化的鲁棒性,我们提出了一个新型的两阶段深度学习(DL)框架,其中第一阶段从整个大脑MRI中识别和作物thalamus区域,第二阶段对裁剪量进行了每素的回归,以将目标定位在最佳分辨率量表上。为了解决数据稀缺性问题,我们使用伪标签训练模型,这些标签是根据可用标记的数据使用多ATLAS注册创建的。为了评估所提出的框架的性能,我们验证了两种基于采样的不确定性估计技术,即蒙特卡洛辍学(MCDO)和测试时间增强(TTA)在第二阶段本地化网络上。此外,我们提出了一种新型的不确定性估计度量,称为最大激活色散(MAD),以估计定位任务的图像不确定性。我们的结果表明,所提出的方法比传统的多ATLAS方法和TTA实现了更强的定位性能,可以进一步提高鲁棒性。此外,通过MAD估计的认知和混合不确定性可以用来检测不可靠的局部化和MAD估计的不确定性的幅度,这可能反映出被拒绝的预测的不可靠程度。

Atlas-based methods are the standard approaches for automatic targeting of the Anterior Nucleus of the Thalamus (ANT) for Deep Brain Stimulation (DBS), but these are known to lack robustness when anatomic differences between atlases and subjects are large. To improve the localization robustness, we propose a novel two-stage deep learning (DL) framework, where the first stage identifies and crops the thalamus regions from the whole brain MRI and the second stage performs per-voxel regression on the cropped volume to localize the targets at the finest resolution scale. To address the issue of data scarcity, we train the models with the pseudo labels which are created based on the available labeled data using multi-atlas registration. To assess the performance of the proposed framework, we validate two sampling-based uncertainty estimation techniques namely Monte Carlo Dropout (MCDO) and Test-Time Augmentation (TTA) on the second-stage localization network. Moreover, we propose a novel uncertainty estimation metric called maximum activation dispersion (MAD) to estimate the image-wise uncertainty for localization tasks. Our results show that the proposed method achieved more robust localization performance than the traditional multi-atlas method and TTA could further improve the robustness. Moreover, the epistemic and hybrid uncertainty estimated by MAD could be used to detect the unreliable localizations and the magnitude of the uncertainty estimated by MAD could reflect the degree of unreliability for the rejected predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源