论文标题

半代数集中的连通性i

Connectivity in Semi-Algebraic Sets I

论文作者

Hong, Hoon, Rohal, James, Din, Mohab Safey El, Schost, Eric

论文摘要

半代数集是由多项式方程和具有实际系数的不等式定义的真实空间的子集,并且是许多最大连接的组件有限的结合。我们考虑确定半代数集中是否连接两个给定点的问题;也就是说,这两个点是否位于相同的连接组件中。特别是,我们考虑由f <> 0定义的半代数集,其中f是具有整数系数的给定多项式。动机来自这样的观察,即科学和工程中许多重要或非平凡的问题通常可以降低到连通性的问题。由于其重要性,因此对这个问题进行了激烈的研究工作。我们将根据梯度上升来描述一种符号数方法。该方法将在两篇论文中进行描述。第一篇论文(目前的一篇)将描述符号部分,即将推出的第二篇论文将描述数字部分。在本文中,我们为符号部分提供了正确性和终止的证明,并使用几个非平凡示例说明了该方法的功效。

A semi-algebraic set is a subset of the real space defined by polynomial equations and inequalities having real coefficients and is a union of finitely many maximally connected components. We consider the problem of deciding whether two given points in a semi-algebraic set are connected; that is, whether the two points lie in the same connected component. In particular, we consider the semi-algebraic set defined by f <> 0 where f is a given polynomial with integer coefficients. The motivation comes from the observation that many important or non-trivial problems in science and engineering can be often reduced to that of connectivity. Due to its importance, there has been intense research effort on the problem. We will describe a symbolic-numeric method based on gradient ascent. The method will be described in two papers. The first paper (the present one) will describe the symbolic part and the forthcoming second paper will describe the numeric part. In the present paper, we give proofs of correctness and termination for the symbolic part and illustrate the efficacy of the method using several non-trivial examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源