论文标题

用于野外相机标识的Forchheim图像数据库

The Forchheim Image Database for Camera Identification in the Wild

论文作者

Hadwiger, Benjamin, Riess, Christian

论文摘要

图像出处可以代表刑事调查和新闻事实检查中的重要知识。在过去的二十年中,已经提出了许多算法,以获取有关图像的源相机和分布历史记录的信息。对于这些技术的公平排名,重要的是要严格评估其在实际相关的测试用例上的性能。为此,已经提出了许多数据集。但是,我们认为现有数据库存在差距:据我们所知,目前尚无同时满足两个目标的数据集,即a)可以清晰分开场景内容和法医痕迹,b)支持像社交媒体重新压缩这样的社交媒体重新压缩。在这项工作中,我们建议Forchheim Image数据库(FODB)缩小此差距。它由27个智能手机摄像机的143张场景的23,000张图像组成,并允许将图像内容与法医文物清晰分开。每个图像以6种不同的质量提供:原始的摄像机本地版本,以及来自社交网络的五个副本。我们证明了FODB在评估摄像机识别方法中的有用性。我们报告三个发现。首先,最近提出的通用有效网络在干净和压缩的图像上均优于几个专用法医CNN。其次,即使在通过人工降解增强后,分类器即使在未知后处理后也获得了性能提升。第三,FODB对场景内容和法医痕迹的清洁分离施加了算法基准测试的重要,严格的边界条件。

Image provenance can represent crucial knowledge in criminal investigation and journalistic fact checking. In the last two decades, numerous algorithms have been proposed for obtaining information on the source camera and distribution history of an image. For a fair ranking of these techniques, it is important to rigorously assess their performance on practically relevant test cases. To this end, a number of datasets have been proposed. However, we argue that there is a gap in existing databases: to our knowledge, there is currently no dataset that simultaneously satisfies two goals, namely a) to cleanly separate scene content and forensic traces, and b) to support realistic post-processing like social media recompression. In this work, we propose the Forchheim Image Database (FODB) to close this gap. It consists of more than 23,000 images of 143 scenes by 27 smartphone cameras, and it allows to cleanly separate image content from forensic artifacts. Each image is provided in 6 different qualities: the original camera-native version, and five copies from social networks. We demonstrate the usefulness of FODB in an evaluation of methods for camera identification. We report three findings. First, the recently proposed general-purpose EfficientNet remarkably outperforms several dedicated forensic CNNs both on clean and compressed images. Second, classifiers obtain a performance boost even on unknown post-processing after augmentation by artificial degradations. Third, FODB's clean separation of scene content and forensic traces imposes important, rigorous boundary conditions for algorithm benchmarking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源