论文标题
lambda和:来自太阳能恒星的后序列风
Lambda And: A post-main sequence wind from a solar-mass star
论文作者
论文摘要
我们研究了Lambda的风和太阳能恒星,它从主序列中演变为次级巨人。我们提出光谱学观察结果,并使用它们来重建Lambda和Lambda的表面磁场。尽管比我们的太阳大得多,但该恒星表现出更强的(最多达到83 g)的大规模磁场,该磁场由多型组件主导。为了研究Lambda的风,我们使用派生的磁图来模拟两个恒星风场,即多变态风(热驱动)和Alfven-Wave驱动的风,并具有湍流散射。从我们的3D磁水动力学模拟中,我们计算了风热发射,并将其与以前发表的无线电观察结果和更多的VLA观测值进行了比较,并在此处提出。这些观察结果表明,在〜5 GHz处的基底亚型静态通量水平,在时期,磁通量密度更大(> 37 mJy),可能是由于无线电耀斑所致。通过将我们的模型结果与Lambda的无线电观察结果进行比较,我们可以限制其质量损失率MDOT。有两个可能的结论。 1)假设静止的无线电发射起源于恒星风,我们得出结论,Lambda和MDOT 〜3E-9 MSUN/YR,这与进化的太阳能恒星的不断发展的质量损失率趋势一致。 2)或者,如果静态发射不是源于风,我们的模型只能对质量损失率施加上限,这表明MDOT <〜3E-9 MSUN/YR。
We investigate the wind of lambda And, a solar-mass star that has evolved off the main sequence becoming a sub-giant. We present spectropolarimetric observations and use them to reconstruct the surface magnetic field of lambda And. Although much older than our Sun, this star exhibits a stronger (reaching up to 83 G) large-scale magnetic field, which is dominated by the poloidal component. To investigate the wind of lambda And, we use the derived magnetic map to simulate two stellar wind scenarios, namely a polytropic wind (thermally-driven) and an Alfven-wave driven wind with turbulent dissipation. From our 3D magnetohydrodynamics simulations, we calculate the wind thermal emission and compare it to previously published radio observations and more recent VLA observations, which we present here. These observations show a basal sub-mJy quiescent flux level at ~5 GHz and, at epochs, a much larger flux density (>37 mJy), likely due to radio flares. By comparing our model results with the radio observations of lambda And, we can constrain its mass-loss rate Mdot. There are two possible conclusions. 1) Assuming the quiescent radio emission originates from the stellar wind, we conclude that lambda And has Mdot ~ 3e-9 Msun/yr, which agrees with the evolving mass-loss rate trend for evolved solar-mass stars. 2) Alternatively, if the quiescent emission does not originate from the wind, our models can only place an upper limit on mass-loss rates, indicating that Mdot <~ 3e-9 Msun/yr.