论文标题
QCD运算符的两环异常尺寸至二维和Higgs EFT振幅
Two-Loop anomalous dimensions of QCD operators up to dimension-sixteen and Higgs EFT amplitudes
论文作者
论文摘要
我们考虑了QCD gluonic扇区中高维洛伦兹标量运算符的两环重新规定。这些运算符也出现在Higgs的有效理论中,通过在Gluon融合过程中整合了顶级夸克环。我们首先讨论操作员的分类以及如何使用外壳野外理论方法和壳外形形式主义构建一组良好的基础。为了研究循环校正,我们采用有效的Unitarity-IBP策略,并计算长3算子的两环最小形式,最小为16。从形状因素结果的紫外线差异中,我们提取重新归一化矩阵并详细分析操作员混合行为。我们计算的形式因素也等同于希格斯和三胶状振幅,这些振幅捕获了希格斯EFT中高阶最高质量校正。我们获得了表现出多种通用超朝非性结构的分析有限余数功能。
We consider two-loop renormalization of high-dimensional Lorentz scalar operators in the gluonic sector of QCD. These operators appear also in the Higgs effective theory obtained by integrating out the top quark loop in the gluon fusion process. We first discuss the classification of operators and how to construct a good set of basis using both off-shell field theory method and on-shell form factor formalism. To study loop corrections, we apply efficient unitarity-IBP strategy and compute the two-loop minimal form factors of length-3 operators up to dimension sixteen. From the UV divergences of form factor results, we extract the renormalization matrices and analyze the operator mixing behavior in detail. The form factors we compute are also equivalent to Higgs plus three-gluon amplitudes that capture high-order top mass corrections in Higgs EFT. We obtain the analytic finite remainder functions which exhibit several universal transcendentality structures.