论文标题
倾向于解开潜在空间,以进行无监督的语义脸编辑
Towards Disentangling Latent Space for Unsupervised Semantic Face Editing
论文作者
论文摘要
Stylegan生成的图像中的面部属性纠缠在潜在空间中,这使得在不影响其他属性的情况下独立控制特定属性变得非常困难。监督属性编辑需要带注释的培训数据,这很难获得,并将可编辑的属性限制为具有标签的人。因此,在解开的潜在空间中无监督的属性编辑是执行整洁和多功能语义面部编辑的关键。在本文中,我们提出了一种新技术,称为结构文本独立体系结构,具有重量分解和正交正则化(Stia-wo),以解开潜在的空间,以进行无监督的语义面部编辑。通过将Stia-wo应用于GAN,我们开发了一种称为Stangan-wo的样式,通过利用样式矢量来构建一个完全可控制的权重矩阵来调节图像综合,并采用正交正则化来确保样式向量的每个输入仅控制一个独立的功能矩阵。为了进一步删除面部属性,Stangan-wo引入了一个独立的结构独立体系结构,该体系结构独立使用两个分布式(i.i.d.)潜在向量来控制质地和结构组件的合成,以一种散布的方式。无监督的语义编辑是通过将潜在代码沿其正交方向移动潜在代码来更改纹理相关属性或更改细层中的潜在代码以操纵与结构相关的属性。我们提出了实验结果,这些结果表明我们的新Stgan-Wo可以比最新方法的状态获得更好的属性编辑。
Facial attributes in StyleGAN generated images are entangled in the latent space which makes it very difficult to independently control a specific attribute without affecting the others. Supervised attribute editing requires annotated training data which is difficult to obtain and limits the editable attributes to those with labels. Therefore, unsupervised attribute editing in an disentangled latent space is key to performing neat and versatile semantic face editing. In this paper, we present a new technique termed Structure-Texture Independent Architecture with Weight Decomposition and Orthogonal Regularization (STIA-WO) to disentangle the latent space for unsupervised semantic face editing. By applying STIA-WO to GAN, we have developed a StyleGAN termed STGAN-WO which performs weight decomposition through utilizing the style vector to construct a fully controllable weight matrix to regulate image synthesis, and employs orthogonal regularization to ensure each entry of the style vector only controls one independent feature matrix. To further disentangle the facial attributes, STGAN-WO introduces a structure-texture independent architecture which utilizes two independently and identically distributed (i.i.d.) latent vectors to control the synthesis of the texture and structure components in a disentangled way. Unsupervised semantic editing is achieved by moving the latent code in the coarse layers along its orthogonal directions to change texture related attributes or changing the latent code in the fine layers to manipulate structure related ones. We present experimental results which show that our new STGAN-WO can achieve better attribute editing than state of the art methods.