论文标题

电子结构的多任务学习,以预测和探索分子势能表面

Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces

论文作者

Qiao, Zhuoran, Ding, Feizhi, Welborn, Matthew, Bygrave, Peter J., Smith, Daniel G. A., Anandkumar, Animashree, Manby, Frederick R., Miller III, Thomas F.

论文摘要

我们完善了OrbNet模型,以使用图神经网络结构来准确预测分子的能量,力和其他响应特性,该构建基于低成本近似量子算子的特征,在适应于对称性的原子轨道基础上。由于所有电子结构项的分析梯度导致了分析梯度,因此该模型是端到端微分的,并且由于使用域特异性特征,因此可在化学空间上转移。通过通过多任务学习对电子结构的有力限制纳入了学习效率,可以提高学习效率。该模型的表现优于QM9数据集的能量预测任务的现有方法,以及与传统的量子化学计算(例如密度功能理论)相比,以千倍或更低的计算成本来降低了构型数据集的分子几何优化。

We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules using a graph neural-network architecture based on features from low-cost approximated quantum operators in the symmetry-adapted atomic orbital basis. The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms, and is shown to be transferable across chemical space due to the use of domain-specific features. The learning efficiency is improved by incorporating physically motivated constraints on the electronic structure through multi-task learning. The model outperforms existing methods on energy prediction tasks for the QM9 dataset and for molecular geometry optimizations on conformer datasets, at a computational cost that is thousand-fold or more reduced compared to conventional quantum-chemistry calculations (such as density functional theory) that offer similar accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源