论文标题

关于非平面强耦合校正与BPS Wilson循环和手性主要操作员的相关器的结构

On the structure of non-planar strong coupling corrections to correlators of BPS Wilson loops and chiral primary operators

论文作者

Beccaria, Matteo, Tseytlin, Arkady A.

论文摘要

从涉及1/2 bps圆形的Wilson Loop $ \ cal W $中的相关器的一些已知定位(矩阵模型)开始,in $ {\ cal n} = 4 $ sym理论,我们以大型't Hooft t Hooft t Hooft t Hooft of to Hooft coupling $λ$限制了其$ 1/n $扩展。我们遵循arxiv:2007.08512中最终与较高属校正的可能性的动机,并根据字符串耦合$ g _ {\ rm s} \ sim g^2 _ {\ rm ym ym ym ym ym ym} \ sim viss/n $ and n N $和字符串um和字符串$ tense $ teense $ t \ sqr表示结果。仅在$ g _ {\ rm s} $中以$ 1 /t $项中的每个订单保持领先地位$ g^2 _ {\ rm s}/t^2 $。就像$ \ langle {\ cal w} \ rangle $一样,这些领先术语已知可以恢复为“单手”贡献的指数$ \ sim g^2 _ {\ rm s} /t $ $ g^2 _ {\ rm s}/t^2 $的平方根函数。 $ g^2 _ {\ rm s}/t $的类似扩展是针对几个偶然的Wilson Loops的相关器找到的,它们再次具有简单的重新定义。我们还发现了ABJM理论中1/2 bps Wilson Loops的相关器的相似扩展。

Starting with some known localization (matrix model) representations for correlators involving 1/2 BPS circular Wilson loop $\cal W$ in ${\cal N}=4$ SYM theory we work out their $1/N$ expansions in the limit of large 't Hooft coupling $λ$. Motivated by a possibility of eventual matching to higher genus corrections in dual string theory we follow arXiv:2007.08512 and express the result in terms of the string coupling $g_{\rm s} \sim g^2_{\rm YM} \sim λ/N$ and string tension $T\sim \sqrt λ$. Keeping only the leading in $1/T$ term at each order in $g_{\rm s} $ we observe that while the expansion of $\langle {\cal W} \rangle$ is a series in $g^2_{\rm s} /T$, the correlator of the Wilson loop with chiral primary operators ${\cal O}_J $ has expansion in powers of $g^2_{\rm s}/T^2$. Like in the case of $\langle {\cal W} \rangle$ where these leading terms are known to resum into an exponential of a "one-handle" contribution $\sim g^2_{\rm s} /T$, the leading strong coupling terms in $\langle {\cal W}\, {\cal O}_J \rangle$ sum up to a simple square root function of $g^2_{\rm s}/T^2$. Analogous expansions in powers of $g^2_{\rm s}/T$ are found for correlators of several coincident Wilson loops and they again have a simple resummed form. We also find similar expansions for correlators of coincident 1/2 BPS Wilson loops in the ABJM theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源