论文标题
$ t \ bar {t} $ - 流动效果对圆环分区功能
$T\bar{T}$-flow effects on torus partition functions
论文作者
论文摘要
在本文中,我们根据扰动QFT方法调查了带有$ t \ bar {t} $变形的共形场理论(CFTS)的分区功能。在拉格朗日路径的整体形式主义中,获得了2D自由玻色子的分区函数的一阶和二阶变形,免费的dirac fermions和torus上的自由majorana fermions。还讨论了这些理论中相应的拉格朗日对抗。变形分区函数的前两个顺序以及通过扰动QFT方法获得的第一量子KDV电荷的一阶真空期望值(VEV)与汉密尔顿形式在文献中获得的结果一致。
In this paper, we investigate the partition functions of conformal field theories (CFTs) with the $T\bar{T}$ deformation on a torus in terms of the perturbative QFT approach. In Lagrangian path integral formalism, the first- and second-order deformations to the partition functions of 2D free bosons, free Dirac fermions, and free Majorana fermions on a torus are obtained. The corresponding Lagrangian counterterms in these theories are also discussed. The first two orders of the deformed partition functions and the first-order vacuum expectation value (VEV) of the first quantum KdV charge obtained by the perturbative QFT approach are consistent with results obtained by the Hamiltonian formalism in literature.