论文标题

通用一维哈密顿系统的晶格气模型

A lattice gas model for generic one-dimensional Hamiltonian Systems

论文作者

Schmidt, Johannes, Schütz, Gunter M., van Beijeren, Henk

论文摘要

We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent $z=3/2$ and symmetric Prähofer-Spohn scaling function) and a superdiffusive heat mode with dynamical exponent $z=5/3$和对称的Lévy缩放函数。晶格气体模型可容纳有效的数值模拟。我们从动态蒙特卡洛模拟获得的主要发现是:(i)声音模式的经常观察到的数值不对称是有限的时间效应。 (ii)$ 5/3 $-LévyMode的比例因子的模式耦合计算至少给出了正确的数量级。 (iii)有明显的扩散校正是非宇宙的。

We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent $z=3/2$ and symmetric Prähofer-Spohn scaling function) and a superdiffusive heat mode with dynamical exponent $z=5/3$ and symmetric Lévy scaling function. The lattice gas model is amenable to efficient numerical simulation. Our main findings, obtained from dynamical Monte-Carlo simulation, are: (i) The frequently observed numerical asymmetry of the sound modes is a finite time effect. (ii) The mode-coupling calculation of the scale factor for the $5/3$-Lévy-mode gives at least the right order of magnitude. (iii) There are significant diffusive corrections which are non-universal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源