论文标题

从Fock空间的角度过渡的多体定位过渡处的罕见热气泡

Rare thermal bubbles at the many-body localization transition from the Fock space point of view

论文作者

De Tomasi, Giuseppe, Khaymovich, Ivan M., Pollmann, Frank, Warzel, Simone

论文摘要

在这项工作中,我们研究了多体定位(MBL)过渡,并将其与Fock空间中的本征态结构相关联。除了标准的纠缠和多型探针外,我们还引入了特征状态系数相对于Fock空间中的hamming距离的径向概率分布,从波函数最大值,并将此分布的累积物与MBL相中运动积分的准分子积分的属性相关联。我们演示了多体分形尺寸$ d_q $的非自由属性属性,并将其直接与MBL过渡时运动积分的本地化长度直接相关联。我们提供了一个连续的多体跃迁的示例,通过在整个参数范围内通过$ d_q $的自动化确认了上述关系。引入一个简单的玩具模型,该模型载有沿着崇高的热气泡,我们在标准探针和新引入的径向概率分布方面提供了分析证据,即Fock空间中的MBL过渡与DeLocalization的Avalanche机制一致,即Kosterlitz-kosterlitz-thouless-thouless-thouless-thoubyless。因此,我们表明,MBL的转变可以看作是沿着非共性延伸状态之间的过渡,并将上界的上限放在了针对非相互作用情况下的真正安德森定位过渡的疾病缩放。

In this work we study the many-body localization (MBL) transition and relate it to the eigenstate structure in the Fock space. Besides the standard entanglement and multifractal probes, we introduce the radial probability distribution of eigenstate coefficients with respect to the Hamming distance in the Fock space from the wave function maximum and relate the cumulants of this distribution to the properties of the quasi-local integrals of motion in the MBL phase. We demonstrate non-self-averaging property of the many-body fractal dimension $D_q$ and directly relate it to the jump of $D_q$ as well as of the localization length of the integrals of motion at the MBL transition. We provide an example of the continuous many-body transition confirming the above relation via the self-averaging of $D_q$ in the whole range of parameters. Introducing a simple toy-model, which hosts ergodic thermal bubbles, we give analytical evidences both in standard probes and in terms of newly introduced radial probability distribution that the MBL transition in the Fock space is consistent with the avalanche mechanism for delocalization, i.e., the Kosterlitz-Thouless scenario. Thus, we show that the MBL transition can been seen as a transition between ergodic states to non-ergodic extended states and put the upper bound for the disorder scaling for the genuine Anderson localization transition with respect to the non-interacting case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源