论文标题
磁场模拟使用高阶方案使用明确的时间集成
Magnetic Field Simulations Using Explicit Time Integration With Higher Order Schemes
论文作者
论文摘要
使用第一和第二多项式的有限元方法将涉及非线性材料的瞬态磁质量矢量电位配方空间离散。通过应用广义Schur补充所得的差异代数方程系统被重新重新构成一个普通微分方程(ODE)的系统。使用显式Euler方案在及时集成了ODE系统,该方案通过最大时间步长有条件地稳定。为了克服这一限制,采用了高阶的显式runge-kutta-kutta-chebyshev时间集成方法来扩大最大稳定的时间步长。在整体计算工作中比较了这两种时间整合方法。
A transient magneto-quasistatic vector potential formulation involving nonlinear material is spatially discretized using the finite element method of first and second polynomial order. By applying a generalized Schur complement the resulting system of differential algebraic equations is reformulated into a system of ordinary differential equations (ODE). The ODE system is integrated in time using the explicit Euler scheme, which is conditionally stable by a maximum time step size. To overcome this limit, an explicit multistage Runge-Kutta-Chebyshev time integration method of higher order is employed to enlarge the maximum stable time step size. Both time integration methods are compared regarding the overall computational effort.