论文标题

多输出高斯进程调制泊松过程的事件预测

Multi-output Gaussian Process Modulated Poisson Processes for Event Prediction

论文作者

Jahani, Salman, Zhou, Shiyu, Veeramani, Dharmaraj, Schmidt, Jeff

论文摘要

诸如零件更换和故障事件之类的事件的预测在可靠性工程中起着至关重要的作用。事件流数据通常在制造和望远镜系统中观察到。基于此类事件流的单个单元设计预测模型是具有挑战性的,并且是一个不足的问题。在这项工作中,我们根据强度函数的多元高斯卷积过程(MGCP)提出了一个基于多元高斯卷积过程(MGCP)的非均匀泊松过程的个性化事件预测的非参数预后框架。 MGCP关于不均匀泊松的强度功能的MGCP先验将数据从相似的历史单位映射到正在研究的当前单元,该单元促进了信息共享并允许分析灵活的事件模式。为了促进推理,我们得出了一种用于学习和估计参数的变异推理方案,其中MGCP调制泊松过程模型。实验结果在基于车队的事件预测的合成数据以及现实世界中显示。

Prediction of events such as part replacement and failure events plays a critical role in reliability engineering. Event stream data are commonly observed in manufacturing and teleservice systems. Designing predictive models for individual units based on such event streams is challenging and an under-explored problem. In this work, we propose a non-parametric prognostic framework for individualized event prediction based on the inhomogeneous Poisson processes with a multivariate Gaussian convolution process (MGCP) prior on the intensity functions. The MGCP prior on the intensity functions of the inhomogeneous Poisson processes maps data from similar historical units to the current unit under study which facilitates sharing of information and allows for analysis of flexible event patterns. To facilitate inference, we derive a variational inference scheme for learning and estimation of parameters in the resulting MGCP modulated Poisson process model. Experimental results are shown on both synthetic data as well as real-world data for fleet based event prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源