论文标题

在无法预测的环境中学习具有遗传编程的行为树

Learning Behavior Trees with Genetic Programming in Unpredictable Environments

论文作者

Iovino, Matteo, Styrud, Jonathan, Falco, Pietro, Smith, Christian

论文摘要

现代工业应用要求机器人能够在不可预测的环境中运行,并且可以用最少的努力创建程序,因为任务可能经常发生更改。在本文中,我们表明,遗传编程可有效地用于学习行为树(BT)的结构,以在无法预测的环境中解决机器人任务。此外,我们建议使用一个简单的模拟器进行学习,并证明学习的BT可以在现实的模拟器中解决相同的任务,而无需特定任务的启发式方法即可达到融合。博学的解决方案宽容,使我们的方法吸引了真正的机器人应用。

Modern industrial applications require robots to be able to operate in unpredictable environments, and programs to be created with a minimal effort, as there may be frequent changes to the task. In this paper, we show that genetic programming can be effectively used to learn the structure of a behavior tree (BT) to solve a robotic task in an unpredictable environment. Moreover, we propose to use a simple simulator for the learning and demonstrate that the learned BTs can solve the same task in a realistic simulator, reaching convergence without the need for task specific heuristics. The learned solution is tolerant to faults, making our method appealing for real robotic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源