论文标题

通过自我监管的球形CNN学习来定向表面

Learning to Orient Surfaces by Self-supervised Spherical CNNs

论文作者

Spezialetti, Riccardo, Stella, Federico, Marcon, Marlon, Silva, Luciano, Salti, Samuele, Di Stefano, Luigi

论文摘要

定义并可靠地找到3D表面的规范取向是许多计算机视觉和机器人应用程序的关键。该任务通常是通过手工制作的算法来解决的,这些算法利用了设计师认为具有独特和强大的几何形状提示。但是,人们可能会猜想人类从经验中学习3D对象的固有方向的概念,并且机器可能会这样做。在这项工作中,我们展示了学习为点云的表面的强大规范取向的可行性。基于观察到规范取向的典型特性是与3D旋转的等效性,我们建议采用球形CNN,这是一种最近引入的机械,可以学习在特殊正交组SO上定义的eproivariant表示形式(3)。具体而言,球形相关计算元素定义3D旋转的特征图。我们的方法通过自我监督的训练程序从原始数据中学习了此类特征地图,并坚固地选择旋转以将输入点云转换为学习的规范方向。因此,我们意识到了第一种端到端的学习方法,是定义和提取3D形状的规范取向,我们恰当地将其提出了指南针。在几个公共数据集上的实验证明了其在定向本地表面贴片以及整个对象方面的有效性。

Defining and reliably finding a canonical orientation for 3D surfaces is key to many Computer Vision and Robotics applications. This task is commonly addressed by handcrafted algorithms exploiting geometric cues deemed as distinctive and robust by the designer. Yet, one might conjecture that humans learn the notion of the inherent orientation of 3D objects from experience and that machines may do so alike. In this work, we show the feasibility of learning a robust canonical orientation for surfaces represented as point clouds. Based on the observation that the quintessential property of a canonical orientation is equivariance to 3D rotations, we propose to employ Spherical CNNs, a recently introduced machinery that can learn equivariant representations defined on the Special Orthogonal group SO(3). Specifically, spherical correlations compute feature maps whose elements define 3D rotations. Our method learns such feature maps from raw data by a self-supervised training procedure and robustly selects a rotation to transform the input point cloud into a learned canonical orientation. Thereby, we realize the first end-to-end learning approach to define and extract the canonical orientation of 3D shapes, which we aptly dub Compass. Experiments on several public datasets prove its effectiveness at orienting local surface patches as well as whole objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源