论文标题
多维图像Denoising方法的全面比较
A Comprehensive Comparison of Multi-Dimensional Image Denoising Methods
论文作者
论文摘要
在有效性和效率方面,过滤多维图像,例如颜色图像,彩色视频,多光谱图像和磁共振图像。利用图像的非本地自相似性(NLSS)特征和转换域中的稀疏表示,基于块匹配和3D滤波(BM3D)方法显示出强大的DENOSIND性能。最近,提出了许多具有不同正则化术语,转换和先进深度神经网络(DNN)体系结构的新方法,以提高质量质量。在本文中,我们对合成数据集和现实世界数据集进行了广泛比较60多种方法。我们还介绍了一个新的颜色图像和视频数据集以进行基准测试,我们的评估是从四个不同的角度进行的,包括定量指标,视觉效果,人类评级和计算成本。全面的实验证明:(i)BM3D家族在各种降解任务中的有效性和效率,(ii)一种简单的基于矩阵的算法与张量相比,一种基于矩阵的算法可能会产生相似的结果,(iii)几种经过合成噪声的DNN模型在真实的数据和视频数据范围内培训了与合成噪声的表现。尽管近年来取得了进展,但我们讨论了现有技术的缺点和可能的扩展。数据集和评估代码可在https://github.com/zhaomingkong/denoising-comporparison上公开获得。
Filtering multi-dimensional images such as color images, color videos, multispectral images and magnetic resonance images is challenging in terms of both effectiveness and efficiency. Leveraging the nonlocal self-similarity (NLSS) characteristic of images and sparse representation in the transform domain, the block-matching and 3D filtering (BM3D) based methods show powerful denoising performance. Recently, numerous new approaches with different regularization terms, transforms and advanced deep neural network (DNN) architectures are proposed to improve denoising quality. In this paper, we extensively compare over 60 methods on both synthetic and real-world datasets. We also introduce a new color image and video dataset for benchmarking, and our evaluations are performed from four different perspectives including quantitative metrics, visual effects, human ratings and computational cost. Comprehensive experiments demonstrate: (i) the effectiveness and efficiency of the BM3D family for various denoising tasks, (ii) a simple matrix-based algorithm could produce similar results compared with its tensor counterparts, and (iii) several DNN models trained with synthetic Gaussian noise show state-of-the-art performance on real-world color image and video datasets. Despite the progress in recent years, we discuss shortcomings and possible extensions of existing techniques. Datasets and codes for evaluation are made publicly available at https://github.com/ZhaomingKong/Denoising-Comparison.