论文标题

NLP-CIC @ Prelearn:掌握先决条件关系,从手工制作的功能到嵌入

NLP-CIC @ PRELEARN: Mastering prerequisites relations, from handcrafted features to embeddings

论文作者

Angel, Jason, Aroyehun, Segun Taofeek, Gelbukh, Alexander

论文摘要

我们介绍了2020年Evalita的先决关系学习任务(Prelearn)的系统和发现。该任务旨在分类一对概念是否具有先决条件的关系。我们使用手工制作的功能和嵌入式表示形式对问题进行建模。在两种情况下,我们的提交都排名第一,在测试集上的域平均F1得分分别为0.887和0.690。我们可以免费提供代码。

We present our systems and findings for the prerequisite relation learning task (PRELEARN) at EVALITA 2020. The task aims to classify whether a pair of concepts hold a prerequisite relation or not. We model the problem using handcrafted features and embedding representations for in-domain and cross-domain scenarios. Our submissions ranked first place in both scenarios with average F1 score of 0.887 and 0.690 respectively across domains on the test sets. We made our code is freely available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源