论文标题
使用构造方法计算体积亮起的光生反应器的最佳设计和理想生产率
Calculation of Optimal Design and Ideal Productivities of Volumetrically-Lightened Photobioreactors using the Constructal Approach
论文作者
论文摘要
本文探讨了体积光生物反应器(PBR)的最佳设计和理想动力学性能。从作者开发了几年的知识模型,最初建立了简单的理论规则,以定义太阳能和人工光线PBR的最佳功能。然后,使用构造方法相应地使用了最佳设计或最佳照明结构组装,在笛卡尔和曲线几何形状中,对2D-cylindrical几何学的实际情况进行了特权处理。获得的结果证实了这种方法的巨大潜力,这是在参与和反应性培养基中首次应用于辐射光转移的情况。从理论的角度来看,这使理想PBR的概念(用于太阳能或人工照明)可以清楚地定义,在大多数情况下,这在本文中开发的大多数情况下是在大多数情况下完全符合pbr的PBR(主要用于太阳dicofluv(稀释dicofluv)(稀释dicofluv)(稀释poverôléeDupollux en卷)。在最后一个情况下,计算结果允许宣布最大生物量生产力为热力学限制,这可以澄清今天就这一点上的混乱辩论。本文中提出的工作最终建立了指南,以构想任何所需的几何形状和标准(例如人工照明)或表面(用于太阳照明)最大生产率以及内部或外部辐照的任何所需几何和标准(用于人工照明)或表面(用于太阳照明)的更有效的largycale pbr。
This article examines the optimal design and ideal kinetic performances of volumetrically-lightened photobioreactors (PBR). From knowledge models developed for several years by the author, simple theoretical rules are established at first to define the optimal functioning of solar and artificially-lightened PBR. The constructal approach is then used accordingly, what allows the emergence of the optimal design, or the best lighting structures assembly, in Cartesian and curvilinear geometries, with a privileged treatment for the practical case of the 2D-cylindrical geometry. The obtained results confirm the considerable potential of this approach which is applied here for the first time to the case of the radiant light transfer in participating and reactive media. This enables to define clearly, from a theoretical point of view, the concept of ideal PBR (both for solar or artificial illuminations), which is demonstrated to correspond exactly in most cases to volumetrically-lightened PBR, mainly for the solar DiCoFluV (Dilution Contrôlée du Flux en Volume) concept developed in this article. For this last case, the results of the calculations allow to announce maximal biomass productivities as thermodynamic limits, what can contribute to clarify a today confused debate on this point. The work proposed in this article finally establishes guidelines to conceive more efficient largescale PBR of any desired geometry and criteria like volume (for artificial illumination) or surface (for solar illumination) maximum productivities and internal or external irradiation.