论文标题
在智能边缘计算中DNN的空间和渠道注意力指导的渠道修剪
Channel Pruning Guided by Spatial and Channel Attention for DNNs in Intelligent Edge Computing
论文作者
论文摘要
深度神经网络(DNNS)最近在许多计算机视觉任务中取得了巨大的成功,但是大量参数和高度计算夹在上限上阻碍了他们在资源约束的边缘设备上的部署。值得注意的是,通道修剪是压缩DNN模型的有效方法。一个关键的挑战是确定要删除哪些渠道,以免模型准确性受到负面影响。在本文中,我们首先提出了空间和渠道注意力(SCA),这是一个新的注意模块,将空间和渠道注意力分别结合在一起,分别着重于“何处”和“什么”是最有用的部分。在SCA为衡量通道重要性时产生的量表值的指导下,我们进一步提出了一种新的通道修剪方法,称为通道修剪,以空间和通道注意指导(CPSCA)。实验结果表明,与其他最先进的注意模块相比,SCA达到了最佳的推理准确性,同时又产生了额外的资源消耗。我们在两个基准数据集上的评估表明,在SCA的指导下,我们的CPSCA方法的推理准确性比在相同的修剪比率下的其他最先进的修剪方法更高。
Deep Neural Networks (DNNs) have achieved remarkable success in many computer vision tasks recently, but the huge number of parameters and the high computation overhead hinder their deployments on resource-constrained edge devices. It is worth noting that channel pruning is an effective approach for compressing DNN models. A critical challenge is to determine which channels are to be removed, so that the model accuracy will not be negatively affected. In this paper, we first propose Spatial and Channel Attention (SCA), a new attention module combining both spatial and channel attention that respectively focuses on "where" and "what" are the most informative parts. Guided by the scale values generated by SCA for measuring channel importance, we further propose a new channel pruning approach called Channel Pruning guided by Spatial and Channel Attention (CPSCA). Experimental results indicate that SCA achieves the best inference accuracy, while incurring negligibly extra resource consumption, compared to other state-of-the-art attention modules. Our evaluation on two benchmark datasets shows that, with the guidance of SCA, our CPSCA approach achieves higher inference accuracy than other state-of-the-art pruning methods under the same pruning ratios.