论文标题

自组织映射中的量化误差作为对比度和颜色特定的单像素变化的指标

The quantization error in a Self-Organizing Map as a contrast and colour specific indicator of single-pixel change in large random patterns

论文作者

Wandeto, John M, Dresp-Langley, Birgitta

论文摘要

先前已成功使用了无监督的获胜者学习的固定尺寸自组织图(SOM)中的量化误差,以在最小的计算时间内成功地检测医疗时间序列中的图像和卫星图像的时间序列中的高度有意义的变化。在这里,进一步探讨了SOM中量化误差的功能属性,以表明该度量能够可靠地区分局部对比度强度和对比度符号的最大差异。 QE的这种能力类似于灵长类动物和猫的视觉系统中特定类别的视网膜神经节细胞(所谓的Y细胞)的功能特征,但QE的敏感性超过了人类视觉检测的能力限制。在这里,发现SOM中的量化误差可可靠地信号在从图像中删除或添加到图像中时的对比度或颜色上的颜色变化,而不是当对比度信息的数量和相对权重是恒定的,并且仅在模式变化中的对比元素的局部空间位置时。虽然RGB均值反映了颜色或对比度的更粗糙的变化,但显示SOM-QE在检测到高达500万像素的图像中的单像素变化时表现出优于RGB的平均值。这可能在无监督的图像学习和计算构建块方法的背景下具有重要意义,包括大量图像数据(大数据),包括深度学习块,以及在传输或扫描电子显微照片(TEM,SEM)中或在多谱和多光谱中的子像素级别的传输或扫描电子显微照片(TEM,SEM)中对对比度变化的自动检测。

The quantization error in a fixed-size Self-Organizing Map (SOM) with unsupervised winner-take-all learning has previously been used successfully to detect, in minimal computation time, highly meaningful changes across images in medical time series and in time series of satellite images. Here, the functional properties of the quantization error in SOM are explored further to show that the metric is capable of reliably discriminating between the finest differences in local contrast intensities and contrast signs. While this capability of the QE is akin to functional characteristics of a specific class of retinal ganglion cells (the so-called Y-cells) in the visual systems of the primate and the cat, the sensitivity of the QE surpasses the capacity limits of human visual detection. Here, the quantization error in the SOM is found to reliably signal changes in contrast or colour when contrast information is removed from or added to the image, but not when the amount and relative weight of contrast information is constant and only the local spatial position of contrast elements in the pattern changes. While the RGB Mean reflects coarser changes in colour or contrast well enough, the SOM-QE is shown to outperform the RGB Mean in the detection of single-pixel changes in images with up to five million pixels. This could have important implications in the context of unsupervised image learning and computational building block approaches to large sets of image data (big data), including deep learning blocks, and automatic detection of contrast change at the nanoscale in Transmission or Scanning Electron Micrographs (TEM, SEM), or at the subpixel level in multispectral and hyper-spectral imaging data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源