论文标题

学会在异质大型MIMO网络中进行束缚

Learning to Beamform in Heterogeneous Massive MIMO Networks

论文作者

Zhu, Minghe, Chang, Tsung-Hui, Hong, Mingyi

论文摘要

众所周知,在大规模多输入多输出(MIMO)网络中找到最佳的光束形成器的问题由于其非跨性别性而具有挑战性,并且基于常规优化的算法的计算成本很高。尽管已经提出了基于计算有效的深度学习方法,但它们的复杂性在很大程度上依赖于系统参数,例如发射天线的数量,因此,当部署在基本站(BSS)(BSS)中,这些方法通常不能很好地推广到底座(BSS)中,具有不同的传输天线和不同的室间距离。本文提出了一种新型的基于深度学习的波束形成算法,以应对上述挑战。具体而言,我们考虑了多输入和单输出(MISO)干扰通道中的加权总和(WSR)最大化问题,并通过展开平行梯度投影算法来提出深层的神经网络体系结构。令人惊讶的是,通过利用最佳光束溶液的低维结构,我们构造的神经网络可以独立于发射天线和BS的数量。此外,这样的设计可以进一步扩展到合作的多币网络。基于合成和射线追踪通道模型的数值结果表明,所提出的神经网络可以实现高WSR,而运行时的数值可以显着降低,同时相对于天线数,BS数和Inter-BS距离具有有利的概括能力。

It is well-known that the problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks is challenging because of its non-convexity, and conventional optimization based algorithms suffer from high computational costs. While computationally efficient deep learning based methods have been proposed, their complexity heavily relies upon system parameters such as the number of transmit antennas, and therefore these methods typically do not generalize well when deployed in heterogeneous scenarios where the base stations (BSs) are equipped with different numbers of transmit antennas and have different inter-BS distances. This paper proposes a novel deep learning based beamforming algorithm to address the above challenges. Specifically, we consider the weighted sum rate (WSR) maximization problem in multi-input and single-output (MISO) interference channels, and propose a deep neural network architecture by unfolding a parallel gradient projection algorithm. Somewhat surprisingly, by leveraging the low-dimensional structures of the optimal beamforming solution, our constructed neural network can be made independent of the numbers of transmit antennas and BSs. Moreover, such a design can be further extended to a cooperative multicell network. Numerical results based on both synthetic and ray-tracing channel models show that the proposed neural network can achieve high WSRs with significantly reduced runtime, while exhibiting favorable generalization capability with respect to the antenna number, BS number and the inter-BS distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源