论文标题
Dirichlet,Neumann和Laplacian特征值的比较及其应用
Comparisons of Dirichlet, Neumann and Laplacian eigenvalues on graphs and their applications
论文作者
论文摘要
在本文中,我们可以在图上获得Dirichlet,Neumann和Laplacian特征值的一些比较。我们还讨论了它们的僵化及其某些应用,包括一些Lichnerowicz型,Fiedler-Type和Friedman型估计值,对Dirichlet Eigenvalues和Neumann Eigenvalues。 Neumann特征值的比较可以转化为我们环境中Steklov特征值的比较。因此,某些结果可以看作是Hua-huang-wang的\ cite {hhw}部分的扩展,以及我们以前的作品的一部分\ cite \ cite {sy,sy2}。
In this paper, we obtain some comparisons of the Dirichlet, Neumann and Laplacian eigenvalues on graphs. We also discuss their rigidities and some of their applications including some Lichnerowicz-type, Fiedler-type and Friedman-type estimates for Dirichlet eigenvalues and Neumann eigenvalues. The comparisons on Neumann eigenvalues can be translated to comparisons on Steklov eigenvalues in our setting. So, some of the results can be viewed as extensions for parts of the works of \cite{HHW} by Hua-Huang-Wang, and parts of our previous works \cite{SY,SY2}.