论文标题

汽车等效性感知图形神经网络

Automorphic Equivalence-aware Graph Neural Network

论文作者

Xu, Fengli, Yao, Quanming, Hui, Pan, Li, Yong

论文摘要

在图中区分节点的自动形态在许多科学领域,例如计算生物学家和社交网络分析中起着至关重要的作用。但是,现有的图形神经网络(GNN)无法捕获如此重要的属性。为了使GNN意识到自动构成等效性,我们首先引入了此概念的局部变体 - 以自我为中心的自动形态等价(EGO-AE)。然后,我们设计了GNN的一种新型变体,即葡萄,该变体使用可学习的Ae-Actregators来明确区分每个节点邻居的自我,并用各种子码头模板的辅助工具来区分。尽管子图模板的设计可能很难,但我们进一步提出了一种遗传算法来自动从图形数据中搜索它们。此外,从理论上讲,我们证明了葡萄具有不同自我特征的节点的不同表示形式的表达性,这些节点填补了现有GNN变体的基本差距。最后,我们在八个现实世界图数据上验证了模型,包括社交网络,电子商务共购买网络和引用网络,并表明它始终优于现有的GNN。源代码可在https://github.com/tsinghua-fib-lab/grape上公开。

Distinguishing the automorphic equivalence of nodes in a graph plays an essential role in many scientific domains, e.g., computational biologist and social network analysis. However, existing graph neural networks (GNNs) fail to capture such an important property. To make GNN aware of automorphic equivalence, we first introduce a localized variant of this concept -- ego-centered automorphic equivalence (Ego-AE). Then, we design a novel variant of GNN, i.e., GRAPE, that uses learnable AE-aware aggregators to explicitly differentiate the Ego-AE of each node's neighbors with the aids of various subgraph templates. While the design of subgraph templates can be hard, we further propose a genetic algorithm to automatically search them from graph data. Moreover, we theoretically prove that GRAPE is expressive in terms of generating distinct representations for nodes with different Ego-AE features, which fills in a fundamental gap of existing GNN variants. Finally, we empirically validate our model on eight real-world graph data, including social network, e-commerce co-purchase network, and citation network, and show that it consistently outperforms existing GNNs. The source code is public available at https://github.com/tsinghua-fib-lab/GRAPE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源