论文标题
EVA-PLANNER:环境自适应四极管计划
EVA-Planner: Environmental Adaptive Quadrotor Planning
论文作者
论文摘要
该四键因其出色的敏捷性和灵活性而泛滥成灾。在这些情况下,轨迹计划在产生安全动作以避免障碍的同时确保飞行平稳性时起着至关重要的作用。尽管已经提出了许多有关四型计划的工作,但仍存在研究差距,将自我适应纳入计划框架中,以使无人机在较密集的环境中自动飞行速度较慢并在更安全的区域中提高其速度。在本文中,我们提出了一个环境自适应计划者,以根据障碍物分布和四型状态有效地调整飞行侵略性。首先,我们设计了一种环境自适应安全意识方法,以根据环境风险水平和瞬时运动趋势分配周围障碍的优先级。然后,我们将其应用于多层模型预测性轮廓控制(Multi-MPCC)框架中,以生成适应性,安全和动态可行的局部轨迹。广泛的模拟和现实世界实验验证了我们计划框架的效率和鲁棒性。基准比较还显示了我们方法和另一种先进的环境自适应计划算法的卓越性能。此外,我们将计划框架作为开源ROS包装发布。
The quadrotor is popularly used in challenging environments due to its superior agility and flexibility. In these scenarios, trajectory planning plays a vital role in generating safe motions to avoid obstacles while ensuring flight smoothness. Although many works on quadrotor planning have been proposed, a research gap exists in incorporating self-adaptation into a planning framework to enable a drone to automatically fly slower in denser environments and increase its speed in a safer area. In this paper, we propose an environmental adaptive planner to adjust the flight aggressiveness effectively based on the obstacle distribution and quadrotor state. Firstly, we design an environmental adaptive safety aware method to assign the priority of the surrounding obstacles according to the environmental risk level and instantaneous motion tendency. Then, we apply it into a multi-layered model predictive contouring control (Multi-MPCC) framework to generate adaptive, safe, and dynamical feasible local trajectories. Extensive simulations and real-world experiments verify the efficiency and robustness of our planning framework. Benchmark comparison also shows superior performances of our method with another advanced environmental adaptive planning algorithm. Moreover, we release our planning framework as open-source ros-packages.