论文标题

通过统计阳性样本生成和梯度意识学习的强大视觉跟踪

Robust Visual Tracking via Statistical Positive Sample Generation and Gradient Aware Learning

论文作者

Lin, Lijian, Chen, Haosheng, Liang, Yanjie, Yan, Yan, Wang, Hanzi

论文摘要

近年来,基于卷积的神经网络(CNN)跟踪器在多个基准数据集上实现了最先进的性能。这些跟踪器中的大多数训练二进制分类器,以将目标与背景区分开。但是,他们遭受了两个局限性。首先,由于阳性样品数量有限,这些跟踪器无法有效处理显着的外观变化。其次,容易和硬样品之间存在梯度贡献的显着不平衡,在这些样本中,简单样品通常主导梯度的计算。在本文中,我们通过统计阳性样本生成和梯度意识学习(SPGA)提出了一种可靠的跟踪方法,以解决上述两个限制。为了丰富阳性样品的多样性,我们提出了一种有效,有效的统计阳性样品产生算法,以在特征空间中生成阳性样品。此外,为了处理简单和硬样品之间的不平衡问题,我们提出了梯度敏感的损失,以协调简单和硬样品之间的梯度贡献。对包括OTB50,OTB100和Vot2016在内的三个具有挑战性的基准数据集进行了广泛的实验表明,拟议的SPGA对几个最先进的跟踪器都表现出色。

In recent years, Convolutional Neural Network (CNN) based trackers have achieved state-of-the-art performance on multiple benchmark datasets. Most of these trackers train a binary classifier to distinguish the target from its background. However, they suffer from two limitations. Firstly, these trackers cannot effectively handle significant appearance variations due to the limited number of positive samples. Secondly, there exists a significant imbalance of gradient contributions between easy and hard samples, where the easy samples usually dominate the computation of gradient. In this paper, we propose a robust tracking method via Statistical Positive sample generation and Gradient Aware learning (SPGA) to address the above two limitations. To enrich the diversity of positive samples, we present an effective and efficient statistical positive sample generation algorithm to generate positive samples in the feature space. Furthermore, to handle the issue of imbalance between easy and hard samples, we propose a gradient sensitive loss to harmonize the gradient contributions between easy and hard samples. Extensive experiments on three challenging benchmark datasets including OTB50, OTB100 and VOT2016 demonstrate that the proposed SPGA performs favorably against several state-of-the-art trackers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源