论文标题
3-D非线性系统和蛋白质组装动力学稳定性的中心歧管分析
Centre Manifold Analysis of 3-D nonlinear system and Kinetic stability of Protein Assembly
论文作者
论文摘要
已经制定了具有一般二阶非线性的3D非线性系统的中心流形分析。该系统显示在还原的2-D中心歧管上具有两个固定点。通过引入二维中心歧管,可以显示系统中如何生成振荡动力学。我们还指出并证明了一个定理,可以从原始方程中的非线性项的奇偶校验中找到所得中心歧管方程的稳定性。对于从生物化学中获得的示例的2-D非线性模型,组装中的蛋白质分子,为所选的示例提供了动力学稳定性分析,并在此建立了我们所选示例的定理的有效性。
Centre Manifold analysis of a 3-D nonlinear system with general second order nonlinearities have been worked out. The system is shown to possess two fixed points on the reduced 2-D centre manifold. By introducing a 2-D centre manifold one can show how an oscillatory dynamics may be generated in the system. We also state and prove a theorem to find the stability of the resultant centre manifold equation apriori from the parity of the nonlinear terms in the original equations. For a 2-D nonlinear model with the example picked up from biochemistry, the protein molecules in assembly, kinetic stability analysis is provided for the chosen example and establish herewith the validity of the theorem for our chosen example.