论文标题

通过深度学习来求解高维kolmogorov部分微分方程的参数族

Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential Equations via Deep Learning

论文作者

Berner, Julius, Dablander, Markus, Grohs, Philipp

论文摘要

我们为高维线性kolmogorov部分微分方程(PDE)的参数族的数值解提供了一种深度学习算法。我们的方法是基于重新阐述整个Kolmogorov PDE家族的数值近似,作为使用Feynman-Kac公式的单个统计学习问题。提出了成功的数值实验,从经验上证实了我们提出的算法的功能和效率。我们表明,对模拟数据训练的单个深层神经网络能够学习整个PDE家族在整个时空区域的解决方案功能。最值得注意的是,我们的数值观察和理论结果还表明,所提出的方法并不遭受维数的诅咒,将其与PDE的几乎所有标准数值方法区分开。

We present a deep learning algorithm for the numerical solution of parametric families of high-dimensional linear Kolmogorov partial differential equations (PDEs). Our method is based on reformulating the numerical approximation of a whole family of Kolmogorov PDEs as a single statistical learning problem using the Feynman-Kac formula. Successful numerical experiments are presented, which empirically confirm the functionality and efficiency of our proposed algorithm in the case of heat equations and Black-Scholes option pricing models parametrized by affine-linear coefficient functions. We show that a single deep neural network trained on simulated data is capable of learning the solution functions of an entire family of PDEs on a full space-time region. Most notably, our numerical observations and theoretical results also demonstrate that the proposed method does not suffer from the curse of dimensionality, distinguishing it from almost all standard numerical methods for PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源