论文标题
FOXSI-2太阳能微丝II:硬X射线成像光谱和耀斑能量学
FOXSI-2 Solar Microflares II: Hard X-ray Imaging Spectroscopy and Flare Energetics
论文作者
论文摘要
我们研究了在2014年12月11日的第二次飞行过程中观察到的两个Sub-A类太阳微量液体的能量释放和转移的性质。FOXSI是第一个太阳能销售的仪器,它是第一个利用焦点的光学仪器,以实现X射线(HXR)的效率,以实现焦点的焦点(HXR),以实现焦点的焦点。通过使用光学薄的等温等离子体模型对两个微量液体的频谱分析,我们发现血浆加热至〜10 mk的温度,排放量降至〜$ 10^{44}〜$ cm $ $^{ - 3} $。尽管未检测到FOXSI-2微弹药的非热发射,但对可能的隐藏非热组件的参数空间的研究表明,非热电子中可能有足够的能量来说明微叶片1中的热能,这表明该火炬与标准的厚塔模型非常一致。借助HXR聚焦光学的太阳能设计和改进,FOXSI-2在10 KEV处的灵敏度比核光谱望远镜阵列(NUSTAR)大约高五倍,用于典型的微型型观测值,并允许对Solar HXR的首次直接成像与量表相关的直接成像谱图。利用这些改进的能力来研究小规模事件的演变,我们发现了在A级较低的耀斑期间的空间和时间复杂性的证据。这些研究与船上的大气成像组件结合了同时观察,太阳能动力学天文台(SDO/AIA)表明,这些小型微量液体的演变与大型大型耀斑的演变更相似,而不是预期的纳米燃料的单一能量。
We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket experiment on 2014 December 11. FOXSI is the first solar-dedicated instrument to utilize focusing optics to image the Sun in the hard X-ray (HXR) regime, sensitive to the energy range 4-20 keV. Through spectral analysis of the two microflares using an optically thin isothermal plasma model, we find evidence for plasma heated to temperatures of ~10 MK and emissions measures down to ~$10^{44}~$cm$^{-3}$. Though nonthermal emission was not detected for the FOXSI-2 microflares, a study of the parameter space for possible hidden nonthermal components shows that there could be enough energy in nonthermal electrons to account for the thermal energy in microflare 1, indicating that this flare is plausibly consistent with the standard thick-target model. With a solar-optimized design and improvements in HXR focusing optics, FOXSI-2 offers approximately five times greater sensitivity at 10 keV than the Nuclear Spectroscopic Telescope Array (NuSTAR) for typical microflare observations and allows for the first direct imaging spectroscopy of solar HXRs with an angular resolution at scales relevant for microflares. Harnessing these improved capabilities to study the evolution of small-scale events, we find evidence for spatial and temporal complexity during a sub-A class flare. These studies in combination with contemporanous observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) indicate that the evolution of these small microflares is more similar to that of large flares than to the single burst of energy expected for a nanoflare.