论文标题

在目标分配的不确定性下计划

Planning under Uncertainty to Goal Distributions

论文作者

Conkey, Adam, Hermans, Tucker

论文摘要

计划问题的目标通常被认为是国家空间的子集。但是,对于机器人技术中的许多实践计划问题,我们希望机器人可以预测目标,例如从嘈杂的传感器或通过概括学到的模型到新颖的环境。在这些情况下,不确定性的集合自然扩展到概率分布。尽管一些作品已使用概率分布作为计划的目标,但令人惊讶的是,文献中没有系统的计划对目标分布存在。本文填补了这一空白。我们认为,与许多机器人应用程序的确定性集相比,目标分布是一个更合适的目标表示。我们提出了一种在目标分布的不确定性下进行计划的新方法,我们用它来强调目标分配公式的几个优势。我们通过正式将我们的方法作为推论的一个实例来基于文献的先前结果。另外,我们还将减少几个共同的计划目标,作为我们概率计划框架的特殊情况。我们的实验证明了概率分布的灵活性作为在各种问题上的目标表示,包括障碍物之间的平面导航,拦截移动的目标,将球滚动到目标位置以及到达物体的7-DOF机器人手臂。

Goals for planning problems are typically conceived of as subsets of the state space. However, for many practical planning problems in robotics, we expect the robot to predict goals, e.g. from noisy sensors or by generalizing learned models to novel contexts. In these cases, sets with uncertainty naturally extend to probability distributions. While a few works have used probability distributions as goals for planning, surprisingly no systematic treatment of planning to goal distributions exists in the literature. This article serves to fill that gap. We argue that goal distributions are a more appropriate goal representation than deterministic sets for many robotics applications. We present a novel approach to planning under uncertainty to goal distributions, which we use to highlight several advantages of the goal distribution formulation. We build on previous results in the literature by formally framing our approach as an instance of planning as inference. We additionally derive reductions of several common planning objectives as special cases of our probabilistic planning framework. Our experiments demonstrate the flexibility of probability distributions as a goal representation on a variety of problems including planar navigation among obstacles, intercepting a moving target, rolling a ball to a target location, and a 7-DOF robot arm reaching to grasp an object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源