论文标题
使用灵活的噪声模型来避免噪声模型错误指定,以推断微分方程时间序列模型
Using flexible noise models to avoid noise model misspecification in inference of differential equation time series models
论文作者
论文摘要
在建模时间序列时,通常将观察到的变化分解为“信号”过程,感兴趣的过程和“噪声”,这代表了混淆信号的滋扰因素。要将信号与噪声分开,必须对系统的两个部分进行假设。如果指定信号过程,我们使用此模型的预测可能会概括不佳。同样,如果指定噪声过程,我们可以将观察到的变化过多或太少地归因于信号。几乎没有理由,通常会选择独立的高斯噪声,该噪声定义了一个易于实现但通常失误的统计模型,并且可能会导致系统不确定性,并且可能低估了错误自相关。有一系列替代噪声过程可用,但是实际上,这些过程都不是完全合适的,因为实际噪声可以更好地将这些类型的随时间变化的混合物描述为各种类型的混合物。在这里,我们考虑信号以常规微分方程对信号进行建模的系统,以及适应系统特性的灵活噪声过程的类别。我们的噪声模型包括多元正常内核,高斯过程允许非平稳性和方差,以及非参数贝叶斯模型,将时间序列分为不同的噪声结构的不同块。在我们考虑的情况下,这些噪声过程忠实地再现了真实的系统不确定性:也就是说,使用正确的噪声模型进行推理时,参数估计不确定性。模型本身和适合它们的方法可扩展到大型数据集,并有助于确保在时间序列模型中更适当地量化不确定性。
When modelling time series, it is common to decompose observed variation into a "signal" process, the process of interest, and "noise", representing nuisance factors that obfuscate the signal. To separate signal from noise, assumptions must be made about both parts of the system. If the signal process is incorrectly specified, our predictions using this model may generalise poorly; similarly, if the noise process is incorrectly specified, we can attribute too much or too little observed variation to the signal. With little justification, independent Gaussian noise is typically chosen, which defines a statistical model that is simple to implement but often misstates system uncertainty and may underestimate error autocorrelation. There are a range of alternative noise processes available but, in practice, none of these may be entirely appropriate, as actual noise may be better characterised as a time-varying mixture of these various types. Here, we consider systems where the signal is modelled with ordinary differential equations and present classes of flexible noise processes that adapt to a system's characteristics. Our noise models include a multivariate normal kernel where Gaussian processes allow for non-stationary persistence and variance, and nonparametric Bayesian models that partition time series into distinct blocks of separate noise structures. Across the scenarios we consider, these noise processes faithfully reproduce true system uncertainty: that is, parameter estimate uncertainty when doing inference using the correct noise model. The models themselves and the methods for fitting them are scalable to large datasets and could help to ensure more appropriate quantification of uncertainty in a host of time series models.