论文标题
关于大Zeta值的代数
On algebra of big zeta values
论文作者
论文摘要
我们在本文中引入的大Zeta值的代数是多个Zeta值和多个Zeta动机周期之间的一个中间对象。它包括概括多个Zeta值的数字序列,最简单的示例,不是多个Zeta系列,是Tornheim和。我们表明,收敛的大Zeta值是一方面稳定曲线的模量空间的周期,另一方面是多个Zeta值。它提供了一种替代方法来证明任何此类时期都可以表示为多个Zeta值的合理线性组合和用于查找这种表达的简单算法。
The algebra of big zeta values we introduce in this paper is an intermediate object between multiple zeta values and periods of the multiple zeta motive. It consists of number series generalizing multiple zeta values, the simplest examples, which are not multiple zeta series, are Tornheim sums. We show that convergent big zeta values are periods of the moduli space of stable curves of genus zero on one hand and multiple zeta values on the other hand. It gives an alternative way to prove that any such period may be expressed as a rational linear combination of multiple zeta values and a simple algorithm for finding such an expression.