论文标题

用多种粒子类型的发展纳米颗粒癌处理

Evolving Nano Particle Cancer Treatments with Multiple Particle Types

论文作者

Tsompanas, Michail-Antisthenis, Bull, Larry, Adamatzky, Andrew, Balaz, Igor

论文摘要

长期以来,进化算法已用于优化问题,而对于先验的解决方案尚不清楚。此处研究了这种方法的适用性,该问题是针对靶向癌症的基于纳米颗粒(NP)的药物输送系统的问题。由于治疗的复杂性更高,利用包括多种NP的治疗预计将更加有效。本文首先利用著名的NK模型来探讨健身景观坚固度对基因组长度的演变以及溶液复杂性的影响。还考虑了新序列的大小以及序列缺失的不存在或存在。结果表明,尽管景观坚固性可以改变过程的动力学,但并不会阻碍基因组长度的演变。然后在上述现实世界中探索这些发现。在第一个已知的实例中,通过基于代理的开源物理细胞模拟器同时使用了多种NP的处理。结果表明,当使用预定义的计算预算下的进化技术探索解决方案空间时,使用多种NP会更有效。

Evolutionary algorithms have long been used for optimization problems where the appropriate size of solutions is unclear a priori. The applicability of this methodology is here investigated on the problem of designing a nano-particle (NP) based drug delivery system targeting cancer tumours. Utilizing a treatment comprising of multiple types of NPs is expected to be more effective due to the higher complexity of the treatment. This paper begins by utilizing the well-known NK model to explore the effects of fitness landscape ruggedness upon the evolution of genome length and, hence, solution complexity. The size of a novel sequence and the absence or presence of sequence deletion are also considered. Results show that whilst landscape ruggedness can alter the dynamics of the process, it does not hinder the evolution of genome length. These findings are then explored within the aforementioned real-world problem. In the first known instance, treatments with multiple types of NPs are used simultaneously, via an agent-based open source physics-based cell simulator. The results suggest that utilizing multiple types of NPs is more efficient when the solution space is explored with the evolutionary techniques under a predefined computational budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源