论文标题

光子编码副作用的拓扑背景和任何统计

Topological contextuality and anyonic statistics of photonic-encoded parafermions

论文作者

Liu, Zheng-Hao, Sun, Kai, Pachos, Jiannis K., Yang, Mu, Meng, Yu, Liao, Yu-Wei, Li, Qiang, Wang, Jun-Feng, Luo, Ze-Yu, He, Yi-Fei, Huang, Dong-Yu, Ding, Guang-Rui, Xu, Jin-Shi, Han, Yong-Jian, Li, Chuan-Feng, Guo, Guang-Can

论文摘要

预计在测量Majorana零模式状态期间会出现的准粒子中毒对实现基于Majorana的量子计算的基本问题。 parafermions是对主要植物的自然概括,可以编码拓扑结构对准粒子中毒的免疫。虽然预计在超导量量子厅系统中会出现副作用,但目前的技术尚不可实现。为了绕过此问题,我们使用光子量子模拟器在实验上证明了基于副膜的通用量子计算的关键组成部分。我们在本文中的贡献是双重的。首先,通过操纵光子状态,我们意识到克利福德操作员浆果阶段,与副杂物的编织统计数据相对应。其次,我们首次通过展示派象sopoded Qudit状态的情境性来研究拓扑系统中的量子上下文。重要的是,我们发现拓扑编码的上下文为魔术状态蒸馏打开了道路,而情境性和编织引起的克利福德大门都反对局部噪声。通过引入上下文性,我们的光子量子模拟为实现拓扑量子计算的物理强大方法提供了第一步。

Quasiparticle poisoning, expected to arise during the measurement of Majorana zero mode state, poses a fundamental problem towards the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this article are twofold. First, by manipulating the photonic states, we realize Clifford operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion encoded qudit states. Importantly, we find that the topologically-encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step towards a physically robust methodology for realizing topological quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源